Problem Sheet 3

Problem 1

Let p be an odd prime and q a power of p.
(a) Prove that $x \in \mathbb{F}_{q}^{\times}$is a square if and only if $x^{(q-1) / 2}=1$.
(b) Prove that 2 is a square in \mathbb{F}_{p} if and only if $p \equiv \pm 1 \bmod 8$. Show similarly that -2 is a square in \mathbb{F}_{p} if and only if $p \equiv 1,3 \bmod 8$.
Hint: Prove and use the identity $\left(\zeta+\zeta^{-1}\right)^{2}=2$, where $\zeta \in \overline{\mathbb{F}_{p}}$ is a primitive 8 -th root of unity.

Problem 2

For $n \geq 1$ let $r(n):=\sharp\left\{(x, y) \in \mathbb{Z}^{2} \mid x^{2}+2 y^{2}=n\right\}$. Show that

$$
r(n)=2 \sum_{m \mid n} \chi(m)
$$

where $\chi: \mathbb{Z}_{\geq 1} \longrightarrow\{-1,0,1\}$ is the multiplicative extension of

$$
\chi(p)=\left\{\begin{array}{lll}
0 & \text { if } p=2 \\
1 & \text { if } p \text { prime } \equiv 1,3 & \bmod 8 \\
-1 & \text { if } p \text { prime } \equiv 5,7 & \bmod 8
\end{array}\right.
$$

Problem 3

Let ζ be a primitve N-th root of unity $(N \geq 3)$ and set $\theta:=\zeta+\zeta^{-1}$.
(a) Show that $\mathbb{Q}(\theta)$ is the fixed field of $\mathbb{Q}(\zeta)$ under the automorphism defined by complex conjugation.
(b) Put $n=\phi(N) / 2$. Show that $\left\{1, \zeta, \theta, \theta \zeta, \theta^{2}, \theta^{2} \zeta, \ldots, \theta^{n-1}, \theta^{n-1} \zeta\right\}$ is a basis for $\mathbb{Z}[\zeta]$.
(c) Show that the ring of integers of $\mathbb{Q}(\theta)$ is $\mathbb{Z}[\theta]$.
(d) Suppose that $N=p$ is an odd prime. Prove that the discriminant of $\mathbb{Q}(\theta)$ is $\Delta_{\mathbb{Q}(\theta)}=$ $p^{(p-3) / 2}$.

Problem 4

Let A be a Dedekind ring.
(a) Prove that for any multiplicative subset $S \subseteq A \backslash\{0\}$, the localization $A\left[S^{-1}\right]$ is again a Dedekind ring.
(b) Show that for any ideal $0 \neq \mathfrak{a} \subseteq A$, every ideal of A / \mathfrak{a} is principal. Show further that every ideal of A can be generated by two elements.

